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Abstract
The analogue of the notion of the zero-curvature representation is given for
equations of the discrete Toda lattice type on an arbitrary planar graph. Several
examples are presented which generalize known integrable equations on Z

2.

PACS numbers: 05.50.+q, 02.30.Ik, 02.40.-k, 02.70.-c

1. The trivial monodromy representation

Let us remind the reader that a graph G is called planar if its vertices and edges lie on a plane
and the edges may cross only in the vertices; the notion of the faces is defined for such a graph.
The sets of vertices, edges and faces will be denoted as VG, EG and FG respectively. As a
rule, we consider infinite graphs, however we always assume that each vertex and each face
are incident to a finite subset of edges.

The field variables qv correspond to the vertices v and are related by equations of the form

�v(qv, {qv′ | (v, v′) ∈ EG}) = 0 v ∈ VG. (1)

Equations of such type can arise in the problem of the equilibrium of the particles interacting
with neighbours, but other interpretations are also possible. For example, the case of a square
lattice Z

2 corresponds to the class of equations of the discrete Toda lattice type [1]; in this case
one direction can be interpreted as a discrete spatial variable and the other one as discrete time.
One can also consider the graphs embedded into two-dimensional surfaces, for example, the
equations on cylindrical graphs can be interpreted as problems with quasi-periodic boundary
conditions.

The analogue of the zero-curvature representation for equations (1) can be introduced as
follows. For each face f we put into the correspondence the ψ-function ψf (λ). If the faces
f and f̃ possess a common edge (v, v′), then the transition from ψf to ψf̃ through this edge
will be defined by the formula

ψf̃ = Lf̃f (v, v
′, λ)ψf

where L is some operator which depends on the field variables qv , qv′ and the spectral

parameter λ. The orientation of the edge is unessential, that is Lf̃f (v, v
′) def= Lf̃f (v

′, v).
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Figure 1. The distribution of the corner parameters.

Formally, we do not except degenerate cases when two faces possess several common edges,
or when some face possesses an internal edge.

Definition 1. The operators L define the trivial monodromy representation for equation (1)
if it is equivalent to the following condition: for each closed route through the edges of the
graph the product of the corresponding operators is a scalar operator.

An equivalent formulation can be given in terms of the geometrically dual graphG∗ which
is defined as follows: each edge of G is replaced by a new edge which connects the selected
points in the adjacent faces. If the graph G is connected then G∗∗ = G. Obviously, one may
assume that ψ-functions are associated with the vertices ofG∗, so that definition 1 deals with
the routes on the edges of the dual graph.

The necessary and sufficient condition for the monodromy to be trivial is that it must be
trivial for two types of elementary routes: the transition through any edge and back again; the
cyclic route around any vertex through the incidental edges. These conditions can be written
as follows:

Lf f̃ (v, v
′)Lf̃ f (v, v

′) = cI (2)

LfNfN−1(v, vN) . . . Lf2f1(v, v2)Lf1fN (v, v1) = cI (3)

where fn, n ∈ ZN are the faces incidental to the given vertex v and the faces fn and fn−1

possess the common edge (v, vn); the number N is called the valency of the vertex v (see
figure 3). It is easy to see that the starting point and direction are unessential by virtue of the
first property.

2. Universal models

In general, the interaction of the neighbouring particles can be different for the different edges
(examples of the discrete (relativistic) Toda lattices can be found in [2–9]) and therefore
operators L may depend on the field variables quite differently. Moreover, we cannot expect
that the operators found for a given equation on a given graph will also be suitable for the
other graphs. However, it turns out that some universal equations exist, for which all operators
are of the same structure (up to parameters) independently on the graph. We consider several
examples of the general form∑

v′
�(α+

vv′ − α−
vv′ , qv − qv′) = 0 (v, v′) ∈ EG v ∈ VG (4)

where parameters α+
vv′ and α−

vv′ are assigned, in clockwise order, to the adjacent corners with
the vertex v and common edge (v, v′). We assume that these parameters are not fully arbitrary,
but satisfy the condition (see figure 1)

α±
vv′ = α±

v′v. (5)

We will prove that equation (4) admits the trivial monodromy representation for the
following instances of the function �(a, x):
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Figure 2. Corner parameters of the dual graph.

� = a

x
(a)

� = a coth x (b)

� = log
x + a

x − a
(c)

� = log
ex+a − 1

ex − ea
. (d)

These functions are odd on both arguments:

�(−a, x) = �(a,−x) = −�(a, x)
and this property allows one to interpret equation (4) as the Euler–Lagrange equation δL = 0
for the functional of the form

L =
∑

(v,v′)∈EG
φ(α+

vv′ − α−
vv′ , qv − qv′) ∂xφ(a, x) = �(a, x).

It should be noted that case (b) is related to (a) by the point transformation q �→ e2q and
we may not consider it separately.

Cases (b) and (c) are also related, but in a more complicated way. Remarkably, the rule (5)
becomes consistent with the notion of the geometrically dual graph if we assign

α∓
f f̃

= α±
vv′

where (f, f̃ ) is the edge of the dual graph which is crossed with the edge (v, v′) (see figure 2;
we denote the vertices of G∗ as faces of G, in order to save the letters). The natural question
arises, are equations (4) on the dual graphs related to each other? It turns out that the relation
is rather simple: it is given by the formula

�(α+
vv′ − α−

vv′ , qv − qv′) = εvv′f f̃ (qf̃ − qf ) (6)

where the sign ε depends on the mutual orientation of the edges (v, v′) and (f, f̃ ):

εvv′f̃ f = εv′vf f̃ = −εvv′f f̃ . (7)

For definiteness we assume that εvv′f f̃ = 1 for the configuration shown in figure 2.
Indeed, let us consider the edges and faces which are incidental to the given vertex v and

are enumerated as in figure 3. Formula (6) takes the form

�(αn − αn−1, qv − qvn) = qfn − qfn−1
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Figure 3. The route around the vertex.

Figure 4. The degenerate configurations.

and summing up yields exactly equation (4). In order to obtain the dual equation we have to
use the equivalent formula

�−1(α+
f f̃

− α−
f f̃
, qf − qf̃ ) = εvv′f f̃ (qv − qv′)

where �−1(a,�(a, x)) ≡ x.
It is easy to check that �−1 = � in cases (a) and (d) and therefore the transformation (6)

maps the corresponding equations into the same type of equations on the geometrically dual
graph. In case (b) one obtains �−1 = 1

2 log x+a
x−a which corresponds to case (c).

We conclude this section with an analysis of several ‘degenerate’ subgraphs (figure 4)
which can be eliminated from further consideration.

First, it is easy to see that an internal edge (such that transition through it leads to the same
face) is not involved in the equation at all (since �(0, x) = 0), so it can just be erased.

Next, if a vertex v has only two neighbours v1 and v2, then the equation in this vertex
reads

�(α − α′, q − q1) +�(α′ − α, q − q2) = 0

and therefore q1 = q2, while the value of q remains undetermined. In such a case one can
remove the vertex v and glue the vertices v1 and v2. The equation in this new vertex is obtained
by eliminating q from two old equations in v1 and v2.

An analogous (‘dual’) situation takes place if the vertices v1 and v2 are connected by
double edges. Participation of these edges in the equation is given by two cancelling terms:

· · · +�(α − α′, q1 − q2) +�(α′ − α, q1 − q2) + · · · = 0

so that they can be erased, after which the vertices v1 and v2 become unconnected.
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3. Operators of monodromy

In this section we denote for short α = α−
vv′ , β = α+

vv′ and

(q, p) =
{
(qv, qv′) if εvv′f f̃ = 1
(qv′ , qv) if εvv′f f̃ = −1

(that is, q corresponds to the left-hand vertex with respect to the route from f to f̃ , and p to
the right-hand one). We also use the cyclic enumeration of the corner parameters in a given
vertex, assuming αn = α+

vvn
, as in figure 3. In this notation conditions (2), (3) take the form

L(λ, β, α, q, p)L(λ, β, α, p, q) = cI (8)

LN . . . L2L1 = cI Ln = L(λ, αn, αn−1, q, qn) n ∈ ZN. (9)

Theorem 1. The trivial monodromy representation for equation (4), (a) is given by the matrices

L = (2λ− α − β)I + (α − β)S(q, p) S(q, p) = 1

q − p

(
q + p 2
−2qp −q − p

)
. (10)

Proof. The properties

S(q, p) = −S(p, q) S(q, p)S(q, r) = I + S(q, p)− S(q, r)

are valid. In particular, S2(q, p) = I which implies

L(λ, β, α, q, p)L(λ, β, α, p, q) = 4(λ− α)(λ− β)I.

Next, using the property SmSn = I +Sm−Sn where Sn = S(q, qn), one can prove by induction
the formula

Ln . . . L1 = 2n−1(λ− αn−1) . . . (λ− α1)[(2λ− αn − αN)I

−(αn − αn−1)Sn − · · · − (α2 − α1)S2 − (α1 − αN)S1]

and therefore the condition (9) yields

(αN − αN−1)SN + · · · + (α2 − α1)S2 + (α1 − αN)S1 = 0.

The equivalence of this matrix equation to (4), (a) can be easily proved. �

We have already mentioned that cases (a) and (b) are point equivalent, and cases (b)
and (c) are related by a duality transformation (6). However, the nonlocal character of this
transformation does not allow one to rewrite the operators L. Their structure for cases (c)
and (d) is somewhat different from (10), since it is more natural to write these equations in
multiplicative rather than additive form.

Theorem 2. The trivial monodromy representation for equations (4), (c) and (4), (d) (after
the change eq → q, eα → α) is given by the matrices

L = 1

q − p + α − β

(
(λ− β)q − (λ− α)p α − β

(α − β)((λ− α)(λ− β)− qp) (λ− α)q − (λ− β)p

)

L = 1

αp − βq

(
β(α2 − λ)p − α(β2 − λ)q β2 − α2

λ(α2 − β2)qp α(β2 − λ)p − β(α2 − λ)q

)

respectively.
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Figure 5. Square lattice.

Proof. The property (8) is proved directly, and the property (9) follows from the factorization
of the form

Ln = A−1
n MnAn−1

where Mn is a diagonal matrix. In case (c) these matrices are

An =
(
αn − λ + q 1
αn − λ− q −1

)
Mn = (λ− αn)

( q−qn+αn−αn−1

q−qn−αn+αn−1
0

0 1

)
.

and in case (d)

An =
( −λ αn/q

−αnq 1

)
Mn = (α2

n − λ)

( αnqn−αn−1q

αn−1qn−αnq 0

0 1

)
.

�

4. Examples

In this section we consider equations (4), (a) for the two simplest examples of square and
hexagonal lattices. In these cases the distribution of the corner parameters can be described
explicitly.

Example 1. Consider the square lattice with the variables qm,n. It is easy to see that the rule (5)
allows one to reconstruct the set of parameters α by the values given just above the axism (see
figure 5).

This yields the equation

βm−n+1 − αm+n−1

qm,n − qm,n−1
+
αm+n−1 − βm−n
qm,n − qm−1,n

+
βm−n − αm+n

qm,n − qm,n+1
+
αm+n − βm−n+1

qm,n − qm+1,n
= 0

which is a generalization with variable coefficients of the well known discrete Toda type
lattice [7].

Example 2. In the case of the hexagonal lattice we will enumerate the field variables by
pairs of integers, as before however, this hides the rotational symmetry. Rule (5) allows
one to reconstruct all the corner parameters by the values given along the axes, each axis
corresponding to the corner of one of three types (for the sake of visualization only parameters
α are presented in figure 6; the distribution of parameters β and γ is obtained by rotation on
2
3π ).
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Figure 6. Hexagonal lattice.

The resulting discrete relativistic Toda type lattice reads

βn−m−1 − γ−n
qm,n − qm,n−1

+
γ−n − αm−1

qm,n − qm−1,n−1
+
αm−1 − βn−m
qm,n − qm−1,n

+
βn−m − γ−n−1

qm,n − qm,n+1
+

γ−n−1 − αm

qm,n − qm+1,n+1
+
αm − βn−m−1

qm,n − qm+1,n
= 0.

The case of constant α, β, γ was considered in [8, 9], and closely related equations were
considered in [6].

5. Conclusion

We have considered discrete Toda lattice type equations on the planar graphs and demonstrated
that the notion of the zero-curvature representation can be naturally formulated in terms of the
geometrically dual graph. Some alternative approaches can be found, for example, in [10,11].

Several universal examples were presented which admit such a representation for an
arbitrary graph. In particular, this allows one to obtain some generalizations with variable
coefficients for known equations on the square and hexagonal lattices. We have not discussed
what ‘integrability’ of the equations found means. For infinite graphs with translational
invariance the trace of the monodromy matrix can be used for calculation of the conservation
laws, but the question relating to Liouville integrability is, of course, very delicate. For an
arbitrary graph the situation is completely unclear.

Definition 1 can be adjusted for other classes of equations as well. For example, if we
associate ψ-functions with the vertices of the graph G itself and assume that the operator
L : ψv → ψv′ depends on qv, qv′ then the condition of the trivial monodromy leads to
equations of the form

�f ({qv| v ∈ f }) = 0 f ∈ FG.
In the Z

2 case this class contains the difference KdV and Liouville equations and many others
which can be obtained from the nonlinear superposition principle for Bäcklund transformations,
see, for example, [12]. However, at present I do not know integrable examples of this type on
graphs other than1

Z
2.

1 Such examples appeared in the recent papers [13,14] which were unknown to me at the time of writing this paper.
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